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Motivation

Logical relations (LR) are a powerful proof technique, but difficult
to formalize in Twelf and similar systems.

Method to do so (structural logical relations) devised by
[Schürmann and Sarnat, 2008]: Formalizes weak normalization
and completeness of equivalence checking for simply typed
λ-calculus.

Minimal, pure λ-calculus.

Can we use this for “real” programming languages?
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Our Contributions

Extension of structural logical relations allowing more proofs to be
formalized.

Further insight into the structure of logical-relations based proofs.

Demonstration of proofs of observational equivalence.

In this talk: High-level perspective; see paper for technical details.
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Example 1: Termination

Definition (λnat)

Naturals n :: Nat ::= z | s n
Expressions e, v :: Exp ::= x | lam x . e0 | app e1 e2 | num n
Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: x1 : τ1, . . . , xn : τn . e : τ

Theorem (Termination)
For any e where . e : nat, there exists a v such that e ⇓ v.
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Example 1: Logical Relation

Termination proof requires a logical relation:

Definition (Logical Relation for Termination)

e ∈ JnatK ⇐⇒ ∃n. e ⇓ num n
e ∈ Jarr τ2 τ0K ⇐⇒ ∀e2. e2 ∈ Jτ2K ⊃ app e e2 ∈ Jτ0K

Extend to open expressions: For Γ = x1 : τ1, . . . , xn : τn:

Γ ` e ∈ JτK ⇐⇒ ∀e1 ∈ Jτ1K · · ·en ∈ JτnK.
e[e1 · · ·en/x1 · · · xn] ∈ JτK

Fundamental Theorem: If Γ . e : τ then Γ ` e ∈ JτK.

Representing LR at arrow types problematic. Twelf only supports
metatheorems on ∀∃-form.
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Use an Assertion Logic

Structural Logical Relations [Schürmann and Sarnat, 2008]:

Definition (Assertion Logic, =⇒eval)

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B
| eval(e, v)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

“Cut-full” sequent: Ξ
∣∣∆ •

=⇒ A

“Cut-free” sequent: Ξ
∣∣∆ ◦

=⇒ A

◦
=⇒ eval(_,_) axiomatizes _ ⇓ _:

Theorem (Extraction)

If ·
∣∣∅ ◦

=⇒ eval(e, v), then e ⇓ v.
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Fundamental Theorem

LR representation: Map types to propositions w/bound expression:

JτK :: Exp→ Form

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n)
Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)

Theorem (Fundamental Theorem)
For any e, if

x1 : τ1, . . . , xn : τn . e : τ,

then
x1 : Exp, . . . , xn : Exp | Jτ1K(x1), . . . , JτnK(xn)

•
=⇒ JτK(e).

Note: Induction lives entirely on the meta-level!
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Cut Elimination

Corollary: . e : nat implies ·
∣∣∅ •

=⇒ ∃v . eval(e, v).

By extraction, termination reduced to proving cut elimination:

Theorem (Cut Elimination)

If Ξ
∣∣∆ •

=⇒ A, then Ξ
∣∣∆ ◦

=⇒ A

In Twelf: Syntactic proof due to [Pfenning, 2000]. Bulk of work in:

Lemma (Cut Admissibility)

If Ξ
∣∣∆ ◦

=⇒ A and Ξ
∣∣∆,A ◦

=⇒ C then Ξ
∣∣∆ ◦

=⇒ C.
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Extending to More Expressive Languages

Languages just slightly more expressive than simply typed
λ-calculus require stronger assertion logic.

Specifically, equality reasoning and case-analysis principles.

Assertion logic can only be strengthened if it retains
cut-admissibility.
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Example 2: λ-calculus + ifz

Definition (λnat,ifz)

Naturals n :: Nat ::= z | s n
Expressions e :: Exp ::= x | lam x . e0 | app e1 e2 | num n

| ifz(e0,e1,e2)

Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: Γ . e : τ

Fund thm.: By IH, get JnatK(e0) ≡ ∃Natn. eval(e0,num n). Select
one of branches e1 or e2 based on n.

Structure of terms opaque to assertion logic.

Specify structure explicitly in LR.
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Example 2: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B | A ∧ B | A ∨ B

| eval(e, v) | eq(n,n ′)
Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n)
∧ (eq(n, z)∨ ∃Natn ′. eq(n, s n ′))

Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)
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Equality

eq(n,n ′) axiomatizes syntactic equality:

Ξ
∣∣∆ c

=⇒ eq(n,n)

Cannot show cut-elim for logic w/general equality conversion.

Must restrict equality reasoning to leaves of proofs, i.e., atomic
formulas:

Ξ
∣∣∆ c

=⇒ eq(n1,n ′1)
Ξ
∣∣∆ c

=⇒ eval(e[n1/x1], v [n2/x2]) Ξ
∣∣∆ c

=⇒ eq(n2,n ′2)

Ξ
∣∣∆ c

=⇒ eval(e[n ′1/x1], v [n ′2/x2])
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Example 3: λ-calculus + case

Definition (λnat,case)

Naturals n :: Nat ::= z | s n
Expressions e :: Exp ::= x | lam x . e0 | app e1 e2 | num n

| case(e0,e1, x . e2)

Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: Γ . e : τ

Still need to select branch based on JnatK(e0).

In subcase where ∆
∣∣Ξ •

=⇒ eval(e0,num (s n ′)): By IH, get
Ξ, x : Exp

∣∣∆, JnatK(x) •
=⇒ JτK(e2). Instantiate LR for e2[num n ′/x ]:

Need to show •
=⇒ JnatK(num n ′).
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Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | eq(n,n ′)

| nat+(n)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n)

∧ nat+(n)

∧ (eq(n, z)∨ (∃Natn ′. eq(n, s n ′)

∧ (eq(n ′, z)∨ ∃Natn ′′. · · · )))
Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)
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Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq,nat+))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | eq(n,n ′) | nat+(n)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n) ∧ nat+(n)

∧ (eq(n, z)∨ (∃Natn ′. eq(n, s n ′)

∧ (eq(n ′, z)∨ ∃Natn ′′. · · · )))

Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)
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Assertion Logic With Case-Analysis on Naturals

Ξ
∣∣∆ c

=⇒ nat+(z)

Ξ
∣∣∆ c

=⇒ nat+(n)

Ξ
∣∣∆ c

=⇒ nat+(s n)

Ξ
∣∣∆,eq(n, z) c

=⇒ C Ξ,n ′ : Nat
∣∣∆,eq(n, s n ′),nat+(n ′) c

=⇒ C

Ξ
∣∣∆,nat+(n) c

=⇒ C

nat+(n) proof: structural witness for some n.

As-is, Pfenning’s cut-admissibility proof does not work for logic
with left-rules on atomic propositions.

Can be made to work as long as an index term always gets
smaller in subderivations. For nat+(n): n gets smaller.
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Case-Analysis on Derivations?

Required in, e.g., proofs of observational equivalence (see paper).

Observation: For eval(e, v), indices do not get smaller in
sub-proofs. To be able to add left-rule, index by explicit metric,
e.g.: eval(e, v ,d).

Alternatively: Treat object-language derivations as terms with
dependent sorts.

In the following: Will show minimal example.
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Example 4: λ-calculus + case + numeral constructors

Definition (λsz,case)

Expressions e :: Exp ::= x | lam x . e0 | app e1 e2 | z | s e0

| case(e0,e1, x . e2)
Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: Γ . e : τ

Num N :: v #

Numerals characterized in object-language judgment:

z #

v #

s v #

Could axiomatize as atomic formula, A ::= . . . | isnum(v).

Alternatively: Treat v # as a dependent sort; add structural
witness formula.17



Example 4: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq,num+

Π ))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Expα.A | ∃(e #)α.A
| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | eq(e,e ′)
| num+(N)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Exp | Ξ,α : (e #)

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Expv . eval(e, v)∧ ∃(v #)N.num+(N)

Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)
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Cut-Elimination for Logic with Dependent Sorts

“Well-sortedness” must be compositional w.r.t. substitution:

Theorem (Compositionality)

If o :: S and Ξ1,α : S,Ξ2 | ∆
c

=⇒ A then
Ξ1,Ξ2[o/α] | ∆[o/α]

c
=⇒ A[o/α].

“Free” theorem: everything is represented in LF, contexts Ξ in
particular.

Pfenning’s cut-admissibility theorem requires no changes!
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Equality and Case-Analysis

Need to take care if we want to add equality conversion axioms to
judgments on which we reason by case distinction.

Example: Let e ?
= e ′ be axiomatization of syntactic equality.

Treat as sort.

e ?
= e

e ?
= e ′

s e ?
= s e ′

s e ?
= s e ′

e ?
= e ′

s e0
?
= z

e ?
= e ′

e ?
= e ′ e ′ ?

= e ′′

e ?
= e ′′ · · ·

Goal: From s n ?
= s n ′ and n #, infer n ′ #.

Quantify over alternative judgment e #= equivalent to e # , but
with explicit equality rules.
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Resulting Assertion Logic

Definition (Assertion Logic
(
=⇒eval,num+

Π, #=,
?
=

)
)

Propositions: A,B :: Form ::= ∀Expα.A | ∃Expα.A

| ∃(e #=)α.A | ∃(e ?
=e ′)α.A

| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | num+(N)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Exp | Ξ,α : (e #=)

| Ξ,α : (e ?
= e ′)

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})
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Retain Canonicity of Derivations

How to define rules for e #= ?

Bad: Add extra rule⇒ extra case to handle in all proofs:

z #= nz
v ′ #=

s v ′ #=
ns v #= v ?

= v ′

v ′ #=
conv

Good: Make equality intrinsic property of all rules:

v ?
= z

v #= nz ′ v ′ #= v ?
= s v ′

v #= ns ′

Derivations still canonical. Conversions pushed to equality
derivations.
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Example

Given Q :: s e ′ ?
= s e and N :: e #=, show e ′ #=.

N must end in nz ′ or ns ′.

Case N =
N ′

e0 #=

Q ′

e ?
= s e0

e #= ns ′ (case for nz ′ analogous).

Obtain result by

N ′

e0 #=

Q

s e ′ ?
= s e

e ′ ?
= e

Q ′

e ?
= s e0

e ′ ?
= s e0

e ′ #=
ns ′
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Summary

Results
Extension of SLR method to allow reasoning by case-analysis and
equality.

More proofs can be formalized: see paper for observational
equivalence proofs.

Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

Future work
Lots of boilerplate. Code generation or extension of Twelf?

Experiment with stronger logics – no termination guarantees for
cut-elim though.

Questions?
Code, paper, slides: see http://www.utr.dk/.
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