Structural Logical Relations with Case Analysis and Equality Reasoning

Ulrik Rasmussen Andrzej Filinski

Department of Computer Science University of Copenhagen

LFMTP, Boston, MA September 23, 2013

- Logical relations (LR) are a powerful proof technique, but difficult to formalize in Twelf and similar systems.
- Method to do so (*structural logical relations*) devised by [Schürmann and Sarnat, 2008]: Formalizes weak normalization and completeness of equivalence checking for simply typed λ-calculus.
- Minimal, pure λ -calculus.
- Can we use this for "real" programming languages?

- Extension of structural logical relations allowing more proofs to be formalized.
- Further insight into the structure of logical-relations based proofs.
- Demonstration of proofs of observational equivalence.
- In this talk: High-level perspective; see paper for technical details.

Definition (λ^{nat})

Naturals	п	::	Nat $::= z s n$
Expressions	<i>e</i> , <i>v</i>	::	$Exp ::= x lam x. e_0 app e_1 e_2 num n$
Types	τ	::	Tp ::= nat arr $\tau_2 \tau_0$
CBN Eval.	3	::	e↓v
Typing	T	::	$X_1:\tau_1,\ldots,X_n:\tau_n \triangleright e:\tau$

Theorem (Termination)

For any e where \triangleright e : nat, there exists a v such that $e \Downarrow v$.

Example 1: Logical Relation

• Termination proof requires a logical relation:

Definition (Logical Relation for Termination)

$$\begin{array}{ccc} e \in \llbracket \mathsf{nat} \rrbracket & \Longleftrightarrow & \exists n. \ e \Downarrow \mathsf{num} \ n \\ e \in \llbracket \mathsf{arr} \ \tau_2 \ \tau_0 \rrbracket & \Longleftrightarrow & \forall e_2. \ e_2 \in \llbracket \tau_2 \rrbracket \supset \operatorname{app} e \ e_2 \in \llbracket \tau_0 \rrbracket \end{array}$$

- Extend to open expressions: For $\Gamma = x_1 : \tau_1, \dots, x_n : \tau_n$: $\Gamma \vdash e \in \llbracket \tau \rrbracket \iff \begin{array}{c} \forall e_1 \in \llbracket \tau_1 \rrbracket \cdots e_n \in \llbracket \tau_n \rrbracket.\\ e[e_1 \cdots e_n / x_1 \cdots x_n] \in \llbracket \tau \rrbracket \end{array}$
- Fundamental Theorem: If $\Gamma \triangleright e : \tau$ then $\Gamma \vdash e \in [[\tau]]$.
- Representing LR at arrow types problematic. Twelf only supports metatheorems on ∀∃-form.

Use an Assertion Logic

Structural Logical Relations [Schürmann and Sarnat, 2008]:

Definition (Assertion Logic, \Longrightarrow^{eval}) A, B :: Form ::= $\forall^{\mathsf{Exp}} \alpha, A \mid \exists^{\mathsf{Nat}} \alpha, A$ Propositions: $A \supset B$ eval(e, v) Δ :: Assm ::= { A_1, \ldots, A_n } (Unordered) Assumptions: Ξ :: Ctx ::= $\cdot \mid \Xi, \alpha$: Nat $\mid \Xi, \alpha$: Exp Parameters: $\Xi | \Delta \stackrel{\bullet}{\Longrightarrow} A$ "Cut-full" sequent: $\Xi | \Delta \stackrel{\circ}{\Longrightarrow} A |$ "Cut-free" sequent:

• $\stackrel{\circ}{\Longrightarrow}$ eval(_, _) axiomatizes _ \Downarrow _:

Theorem (Extraction)

If $|\emptyset \stackrel{\circ}{\Longrightarrow} eval(e, v)$, then $e \Downarrow v$.

Fundamental Theorem

 $\bullet\,$ LR representation: Map types to propositions w/bound expression: $[\![\tau]\!]::Exp\to Form$

Definition (Logical Relation for Termination, Assertion-Level)

$$\begin{split} & [\![nat]\!](e) & \iff \quad \exists^{\operatorname{Nat}} n. \operatorname{eval}(e, \operatorname{num} n) \\ & [\![arr \, \tau_2 \, \tau_0]\!](e) & \iff \quad \forall^{\operatorname{Exp}} e_2. \, [\![\tau_2]\!](e_2) \supset [\![\tau_0]\!](\operatorname{app} e \, e_2) \end{split}$$

Theorem (Fundamental Theorem)

For any e, if

$$X_1: \tau_1, \ldots, X_n: \tau_n \triangleright e: \tau$$

then

 $x_1 : \mathsf{Exp}, \ldots, x_n : \mathsf{Exp} \mid \llbracket \tau_1 \rrbracket (x_1), \ldots, \llbracket \tau_n \rrbracket (x_n) \stackrel{\bullet}{\Longrightarrow} \llbracket \tau \rrbracket (e).$

• Note: Induction lives entirely on the meta-level!

• Corollary: $\triangleright e$: nat implies $\cdot | \emptyset \stackrel{\bullet}{\Longrightarrow} \exists v. eval(e, v)$.

• By extraction, termination reduced to proving cut elimination:

Theorem (Cut Elimination) If $\Xi | \Delta \stackrel{\bullet}{\Longrightarrow} A$, then $\Xi | \Delta \stackrel{\circ}{\Longrightarrow} A$

• In Twelf: Syntactic proof due to [Pfenning, 2000]. Bulk of work in:

Lemma (Cut Admissibility) If $\Xi | \Delta \stackrel{\circ}{\longrightarrow} A$ and $\Xi | \Delta, A \stackrel{\circ}{\longrightarrow} C$ then $\Xi | \Delta \stackrel{\circ}{\longrightarrow} C$.

- Languages just slightly more expressive than simply typed λ-calculus require stronger assertion logic.
- Specifically, equality reasoning and case-analysis principles.
- Assertion logic can only be strengthened if it retains cut-admissibility.

Example 2: λ -calculus + ifz

Definition $(\lambda^{nat,ifz})$

- Fund thm.: By IH, get [nat](e₀) ≡ ∃^{Nat}n. eval(e₀, num n). Select one of branches e₁ or e₂ based on n.
- Structure of terms opaque to assertion logic.
- Specify structure explicitly in LR.

Example 2: Logical Relation, Assertion Logic

Definition (Assertion Logic $(\Longrightarrow^{eval,eq})$)

Propositions:A, B::Form::= $\forall^{\mathsf{Exp}} \alpha. A \mid \exists^{\mathsf{Nat}} \alpha. A$ $\mid A \supset B \mid A \land B \mid A \lor B$ $\mid eval(e, v) \mid eq(n, n')$ Assumptions: Δ ::Assm::= $\{A_1, \dots, A_n\}$ (Unordered)Parameters: Ξ :: Ctx ::= $\cdot \mid \Xi, \alpha : \mathsf{Nat} \mid \Xi, \alpha : \mathsf{Exp}$ Proof sequent: $\Xi \mid \Delta \stackrel{c}{\Longrightarrow} A \mid (c \in \{\bullet, \circ\})$

Definition (Logical Relation for Termination, Assertion-Level) $[nat](e) \iff \exists^{Nat} n. eval(e, num n)$ $\land (eq(n, z) \lor \exists^{Nat} n'. eq(n, s n'))$ $[arr \tau_2 \tau_0](e) \iff \forall^{Exp} e_2. [\tau_2](e_2) \supset [\tau_0](app e e_2)$

• eq(n, n') axiomatizes syntactic equality:

$$\Xi | \Delta \stackrel{c}{\Longrightarrow} \mathbf{eq}(n, n)$$

• Cannot show cut-elim for logic w/general equality conversion.

Must restrict equality reasoning to *leaves* of proofs, i.e., atomic formulas:

$$\begin{split} \Xi | \Delta \stackrel{c}{\Longrightarrow} \mathbf{eq}(n_1, n_1') \\ \Xi | \Delta \stackrel{c}{\Longrightarrow} \mathbf{eval}(e[n_1/x_1], v[n_2/x_2]) \quad \Xi | \Delta \stackrel{c}{\Longrightarrow} \mathbf{eq}(n_2, n_2') \\ \Xi | \Delta \stackrel{c}{\Longrightarrow} \mathbf{eval}(e[n_1'/x_1], v[n_2'/x_2]) \end{split}$$

- Still need to select branch based on [nat](e₀).
- In subcase where $\Delta | \Xi \Longrightarrow eval(e_0, \operatorname{num}(s n'))$: By IH, get $\Xi, x : \operatorname{Exp} | \Delta, [[\operatorname{nat}]](x) \Longrightarrow [[\tau]](e_2)$. Instantiate LR for $e_2[\operatorname{num} n'/x]$: Need to show $\Longrightarrow [[\operatorname{nat}]](\operatorname{num} n')$.

Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic $(\Longrightarrow^{eval,eq})$)

Propositions:
$$A, B$$
::Form::= $\forall^{\mathsf{Exp}}\alpha. A \mid \exists^{\mathsf{Nat}}\alpha. A$ $\mid A \supset B \mid A \land B \mid A \lor B$ $\mid eval(e, v) \mid eq(n, n')$ Assumptions: Δ ::Assm::=Parameters: Ξ ::Ctx::= $\exists | \Delta \stackrel{c}{\Longrightarrow} A |$ $(c \in \{\bullet, \circ\})$

Definition (Logical Relation for Termination, Assertion-Level)

 $[[nat]](e) \iff \exists^{\operatorname{Nat}} n. \operatorname{eval}(e, \operatorname{num} n)$

 $\wedge (\mathbf{eq}(n, \mathbf{z}) \lor (\exists^{\mathsf{Nat}} n'. \mathbf{eq}(n, \mathbf{s} n'))$

 $\wedge (\mathbf{eq}(n', \mathbf{z}) \vee \exists^{\mathsf{Nat}} n''. \cdots)))$

 $[\![\operatorname{arr} \tau_2 \, \tau_0]\!](e) \quad \Longleftrightarrow \quad \forall^{\mathsf{Exp}} e_2. \, [\![\tau_2]\!](e_2) \supset [\![\tau_0]\!](\operatorname{app} e \, e_2)$

Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic $(\Longrightarrow^{eval,eq,nat^+})$)

Propositions:
$$A, B$$
::Form::= $\forall^{\mathsf{Exp}} \alpha. A \mid \exists^{\mathsf{Nat}} \alpha. A$ $\mid A \supset B \mid A \land B \mid A \lor B$ $\mid eval(e, v) \mid eq(n, n') \mid nat^+(n)$ Assumptions: Δ ::Assm::=Parameters: Ξ ::Ctx::= $:=$ $:=$ $:=$ $:=$ $:=$ $:=$ Proof sequent: $\Box \mid \Delta \stackrel{c}{\Longrightarrow} A$ $(c \in \{\bullet, \circ\})$

Definition (Logical Relation for Termination, Assertion-Level)

 $[[nat]](e) \iff \exists^{\operatorname{Nat}} n. \operatorname{eval}(e, \operatorname{num} n) \land \operatorname{nat}^+(n)$

 $[\![\operatorname{arr} \tau_2 \, \tau_0]\!]({\boldsymbol{\textit{e}}}) \quad \Longleftrightarrow \quad \forall^{\mathsf{Exp}} {\boldsymbol{\textit{e}}}_2. \, [\![\tau_2]\!]({\boldsymbol{\textit{e}}}_2) \supset [\![\tau_0]\!](\operatorname{app} {\boldsymbol{\textit{e}}} {\boldsymbol{\textit{e}}}_2)$

Assertion Logic With Case-Analysis on Naturals

$$\frac{\Xi | \Delta \stackrel{c}{\Longrightarrow} \mathsf{nat}^+(n)}{\Xi | \Delta \stackrel{c}{\Longrightarrow} \mathsf{nat}^+(z)} \qquad \frac{\Xi | \Delta \stackrel{c}{\Longrightarrow} \mathsf{nat}^+(n)}{\Xi | \Delta \stackrel{c}{\Longrightarrow} \mathsf{nat}^+(s n)}$$
$$\frac{\Delta, \mathsf{eq}(n, \mathsf{z}) \stackrel{c}{\Longrightarrow} C \qquad \Xi, n' : \mathsf{Nat} | \Delta, \mathsf{eq}(n, \mathsf{s} n'), \mathsf{nat}^+(n') \stackrel{c}{\Longrightarrow} C}{\Xi | \Delta, \mathsf{nat}^+(n) \stackrel{c}{\Longrightarrow} C}$$

- **nat**⁺(*n*) proof: *structural witness* for some *n*.
- As-is, Pfenning's cut-admissibility proof does not work for logic with left-rules on atomic propositions.
- Can be made to work as long as an index term always gets smaller in subderivations. For **nat**⁺(*n*): *n* gets smaller.

Ξ

- Required in, e.g., proofs of observational equivalence (see paper).
- Observation: For eval(e, v), indices do not get smaller in sub-proofs. To be able to add left-rule, index by explicit metric, e.g.: eval(e, v, d).
- Alternatively: Treat object-language derivations as *terms* with *dependent sorts*.
- In the following: Will show minimal example.

Example 4: λ -calculus + case + numeral constructors

Definition ($\lambda^{sz,case}$)

Expressions	е	::	Exp ::=	$x \mid \operatorname{lam} x. e_0 \mid \operatorname{app} e_1 e_2 \mid z \mid s e_0$
				case (<i>e</i> ₀ , <i>e</i> ₁ , <i>x</i> . <i>e</i> ₂)
Types	τ	::	Тр ::=	$nat \mid arr \tau_2 \tau_0$
CBN Eval.	3	::	e↓v	
Typing	T	::	Γ ⊳ <i>e</i> :τ	
Num	\mathcal{N}	::	<i>v</i> #	

• Numerals characterized in object-language judgment:

$$\frac{v \#}{s v \#}$$

- *Could* axiomatize as atomic formula, A := ... | isnum(v).
- Alternatively: Treat v # as a dependent sort; add structural witness formula.

Example 4: Logical Relation, Assertion Logic

Definition (Assertion Logic ($\Longrightarrow_{\Pi}^{\text{eval},\text{eq},\text{num}^+}$))

Propositions:
$$A, B$$
::Form::= $\forall^{\mathsf{Exp}} \alpha. A \mid \exists^{\mathsf{Exp}} \alpha. A \mid \exists^{(e \ \#)} \alpha. A$ $\mid A \supset B \mid A \land B \mid A \lor B$ $\mid eval(e, v) \mid eq(e, e')$ $\mid \mathsf{num}^+(\mathbb{N})$ Assumptions: Δ ::AssmParameters: Ξ :: Ctx \equiv $\mid \exists [\Delta \stackrel{e}{\Longrightarrow} A]$ (Unordered)Proof sequent: $\Xi \mid \Delta \stackrel{e}{\Longrightarrow} A$ ($c \in \{\bullet, \circ\}$)

Definition (Logical Relation for Termination, Assertion-Level)

$$[\![\operatorname{nat}]\!](e) \iff \exists^{\mathsf{Exp}} v. \operatorname{eval}(e, v) \land \exists^{(v \ \#)} \mathcal{N}. \operatorname{num}^+(\mathcal{N})$$
$$[\![\operatorname{arr} \tau_2 \tau_0]\!](e) \iff \forall^{\mathsf{Exp}} e_2. [\![\tau_2]\!](e_2) \supset [\![\tau_0]\!](\operatorname{app} e e_2)$$

Cut-Elimination for Logic with Dependent Sorts

• "Well-sortedness" must be compositional w.r.t. substitution:

Theorem (Compositionality) If o :: S and $\Xi_1, \alpha : S, \Xi_2 \mid \Delta \stackrel{c}{\Longrightarrow} A$ then $\Xi_1, \Xi_2[o/\alpha] \mid \Delta[o/\alpha] \stackrel{c}{\Longrightarrow} A[o/\alpha].$

- "Free" theorem: everything is represented in LF, contexts Ξ in particular.
- Pfenning's cut-admissibility theorem requires no changes!

Equality and Case-Analysis

- Need to take care if we want to add equality conversion axioms to judgments on which we reason by case distinction.
- **Example**: Let $e^{\pm} e'$ be axiomatization of syntactic equality. Treat as sort.

$$\frac{e^{\pm}e'}{e^{\pm}e} \quad \frac{e^{\pm}e'}{se^{\pm}se'} \quad \frac{se^{\pm}se'}{e^{\pm}e'} \quad \frac{se_0 \stackrel{\pm}{=} z}{e^{\pm}e'} \quad \frac{e^{\pm}e' \quad e' \stackrel{\pm}{=} e''}{e^{\pm}e''} \quad \cdots$$

- **Goal:** From s $n \stackrel{*}{=} s n'$ and n #, infer n' #.
- Quantify over alternative judgment $e \#^{=}$ equivalent to e #, but with explicit equality rules.

 $\mathsf{Definition}\left(\mathsf{Assertion}\;\mathsf{Logic}\left(\Longrightarrow_{\Pi,\;\#^{-},\overset{*}{=}}^{\mathsf{eval},\mathsf{num}^{+}}\right)\right)$

Propositions:A, B::Form::= $\forall^{\mathsf{Exp}}\alpha. A \mid \exists^{\mathsf{Exp}}\alpha. A$ $\mid \exists^{(e \#^{=})}\alpha. A \mid \exists^{(e^{\pm}e')}\alpha. A$ $\mid A \supset B \mid A \land B \mid A \lor B$ $\mid A \supset B \mid A \land B \mid A \lor B$ $\mid eval(e, v) \mid num^+(\mathcal{N})$ Assumptions: Δ ::AssmParameters: Ξ ::Ctx $\equiv \cdot \mid \Xi, \alpha : \mathsf{Exp} \mid \Xi, \alpha : (e \#^{=})$ $\mid \Xi \mid \Delta \stackrel{c}{\Longrightarrow} A \mid (c \in \{\bullet, \circ\})$

Retain Canonicity of Derivations

• How to define rules for $e \#^{=}$?

• **Bad:** Add extra rule \Rightarrow extra case to handle in all proofs:

$$\frac{v' \#^{=}}{z \#^{=}} \operatorname{nz} \qquad \frac{v' \#^{=}}{s v' \#^{=}} \operatorname{ns} \qquad \frac{v \#^{=} v \stackrel{\star}{=} v'}{v' \#^{=}} \operatorname{conv}$$

• Good: Make equality intrinsic property of all rules:

$$\frac{v \stackrel{*}{=} \mathbf{z}}{v \stackrel{\#}{=}} \mathsf{n} \mathsf{z}' \qquad \frac{v' \stackrel{\#}{=} v \stackrel{*}{=} \mathsf{s} v'}{v \stackrel{\#}{=}} \mathsf{n} \mathsf{s}'$$

Derivations still canonical. Conversions pushed to equality derivations.

Example

- Given $\Omega :: \mathbf{s} e' \stackrel{\star}{=} \mathbf{s} e$ and $\mathcal{N} :: e \#^{=}$, show $e' \#^{=}$.
- \mathcal{N} must end in nz' or ns'.

• Case
$$\mathcal{N} = \underbrace{\frac{\mathcal{N}'}{e_0 \#^{=}} e^{\overset{\mathcal{Q}'}{=}} s e_0}{e \#^{=}} ns'$$
 (case for nz' analogous).

Obtain result by

$$\frac{\overset{\mathcal{Q}}{\underbrace{s e' \stackrel{*}{=} s e}_{e_{0} \#^{=}} & \overset{\mathcal{Q}'}{\underbrace{e' \stackrel{*}{=} e e}_{e \stackrel{*}{=} s e_{0}}_{e' \#^{=}} \\ \underline{e' \stackrel{*}{=} e e \stackrel{*}{=} s e_{0}}_{e' \#^{=}} \operatorname{ns'}$$

Summary

Results

- Extension of SLR method to allow reasoning by case-analysis and equality.
- More proofs can be formalized: see paper for observational equivalence proofs.
- Nice property: Pfenning's cut-elim proof works for dependentently-sorted logic.

Summary

Results

- Extension of SLR method to allow reasoning by case-analysis and equality.
- More proofs can be formalized: see paper for observational equivalence proofs.
- Nice property: Pfenning's cut-elim proof works for dependentently-sorted logic.

Future work

- Lots of boilerplate. Code generation or extension of Twelf?
- Experiment with stronger logics no termination guarantees for cut-elim though.

Summary

Results

- Extension of SLR method to allow reasoning by case-analysis and equality.
- More proofs can be formalized: see paper for observational equivalence proofs.
- Nice property: Pfenning's cut-elim proof works for dependentently-sorted logic.

Future work

- Lots of boilerplate. Code generation or extension of Twelf?
- Experiment with stronger logics no termination guarantees for cut-elim though.

• Questions?

• Code, paper, slides: see http://www.utr.dk/.

Frank Pfenning.

Structural cut elimination: I. Intuitionistic and classical logic. *Information and Computation*, 157(1–2):84–141, 2000.

Carsten Schürmann and Jeffrey Sarnat. Structural logical relations.

In *Proceedings of the 2008 23rd Annual IEEE Symposium on Logic in Computer Science*, LICS '08, pages 69–80, Washington, DC, USA, 2008. IEEE Computer Society.