Structural Logical Relations with

Case Analysis and Equality Reasoning

Ulrik Rasmussen Andrzej Filinski

Department of Computer Science
University of Copenhagen

LFMTP, Boston, MA
September 23, 2013

@ Logical relations (LR) are a powerful proof technique, but difficult
to formalize in Twelf and similar systems.

@ Method to do so (structural logical relations) devised by
[Schirmann and Sarnat, 2008]: Formalizes weak normalization
and completeness of equivalence checking for simply typed
A-calculus.

@ Minimal, pure A-calculus.

@ Can we use this for “real” programming languages?

Our Contributions

@ Extension of structural logical relations allowing more proofs to be
formalized.

@ Further insight into the structure of logical-relations based proofs.
@ Demonstration of proofs of observational equivalence.

@ In this talk: High-level perspective; see paper for technical details.

Example 1: Termination

Definition (A"a!)

Naturals n : Nat == z|sn

Expressions e, v = Exp := x|lamx.egy|appejes|numn
Types T = Tp = nat|arrt T

CBN Eval. e elv

Typing T o [X1:iT,--c Xn:Ta> €: 7|

Theorem (Termination)
For any e where > e : nat, there exists a v such that e || v.

Example 1: Logical Relation

@ Termination proof requires a logical relation:

Definition (Logical Relation for Termination)

ec[nat] < dn.elnumn
eclarrtaty] <= Ves.ex €[] Dappees € [10]

@ Extend to open expressions: ForT"'= Xy : T4, ..., Xp : Tn:

Ver € [t1] - - en € [ta].
eley---en/x1- - Xnl € 7]

N-ee[r] <
@ Fundamental Theorem: If '> e: tthen T I e € [1].

@ Representing LR at arrow types problematic. Twelf only supports
metatheorems on v3-form.

Use an Assertion Logic

Structural Logical Relations [Schirmann and Sarnat, 2008]:

Definition (Assertion Logic, =¢'2)

Propositions: A B : Form := VEPx A|FNalg A

| ADB

| eval(e, v)
Assumptions: A w Assm = {A4, ..., An} (Unordered)
Parameters: = Ctx = -|Z,a:Nat| = o: Exp
“Cut-full” sequent: A=A
“Cut-free” sequent: ZA= A
e —= eval(_,) axiomatizes | _:

Theorem (Extraction)

If -|0 = eval(e,v), then e | v.

Fundamental Theorem

@ LR representation: Map types to propositions w/bound expression:
[7] :: Exp — Form

Definition (Logical Relation for Termination, Assertion-Level)

[nat](e) <= 3INdn.eval(e,numn)
[arr 2 To](6) < VE¥Pes.[t2](e2) D [to](app eez)

Theorem (Fundamental Theorem)
For any e, if

then

@ Note: Induction lives entirely on the meta-level!

Cut Elimination

@ Corollary: > e : nat implies -\@ == Jv.eval(e, v).

@ By extraction, termination reduced to proving cut elimination:

Theorem (Cut Elimination)

If Z|A==A then Z|A= A

@ In Twelf: Syntactic proof due to [Pfenning, 2000]. Bulk of work in:

Lemma (Cut Admissibility)

If Z|A== A and Z|A,A== C then Z|A = C.

Extending to More Expressive Languages

@ Languages just slightly more expressive than simply typed
A-calculus require stronger assertion logic.

@ Specifically, equality reasoning and case-analysis principles.

@ Assertion logic can only be strengthened if it retains
cut-admissibility.

Example 2: A-calculus + ifz

Definition (A"atif2)

Naturals n = Nat == z|sn

Expressions e : Exp == x|lamx.eg|appejes|numn
| ifz(eo, €1, €2)

Types T Tp == nat|arrtoTg

CBN Eval. E = |lelv
Typing T = [Tpe:t

@ Fund thm.: By IH, get [nat](eg) = 3Nn. eval(ey, num n). Select
one of branches e; or e> based on n.

@ Structure of terms opaque to assertion logic.

@ Specify structure explicitly in LR.

Example 2: Logical Relation, Assertion Logic

Definition (Assertion Logic (=>°"3"9))

VEP o, A| INaty A
A>B| AAB|AVB

eval(e,v) | eq(n,n’)

Propositions: A, B : Form

Assumptions: A Assm {Aq, ..., An} (Unordered)
Parameters: g Ctx s= -|Z,ax:Nat| = o: Exp
Proof sequent: Z|a =5 A| (c €{s,0})

Definition (Logical Relation for Termination, Assertion-Level)

[nat](e) <« 3INan. eval(e, numn)
A (eq(n,z) VvV INatn/ eq(n, s n’))
[arr o To](6) <= VPep.[r2](e2) D [To](app e e2)

Equality

@ eq(n, n’) axiomatizes syntactic equality:

Z|A = eq(n, n)

@ Cannot show cut-elim for logic w/general equality conversion.

@ Must restrict equality reasoning to leaves of proofs, i.e., atomic
formulas:

Z|a == eq(m, nj)
=|a = eval(elns/xi], vinp/x2]) Z|A =% eq(ny, ny)

=|A == eval(e[n]/xi], vIn/xo)

Example 3: A-calculus + case

Definition (Anatcase)

Naturals n : Nat == z|sn

Expressions e = Exp == x|lamx.ey|appesex|numn
| case(eg, €1, X.€5)

Types T = Tp == nat|arrteTg

CBN Eval. E = |lelv
Typing T = |[Tpe:x

@ Still need to select branch based on [nat](ep).

@ In subcase where A|= == eval(ep, num (s n’)): By IH, get
= x : Exp|A, [nat](x) == [t](e2). Instantiate LR for e;[num n’/x]:
Need to show == [nat](num n’).

Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic (=>°"3"9))

VEXP . A| INaty. A
ADB|AANB|AV B

eval(e,v) | eq(n, n’)

Propositions: A,B : Form

Assumptions: A Assm {Aq,..., An} (Unordered)
Parameters: = Ctx = -|Z,a:Nat| = o: Exp
Proof sequent: Z|a =5 A| (c €{s,0})

Definition (Logical Relation for Termination, Assertion-Level)

[nat](e) <= 3Nan. eval(e, numn)
A (eq(n,z) Vv (3Nn’. eq(n, s n')
A (eq(n’,z) Vv 3INatp” ...))
[arr o to](6) = VE®es.[12](€2) D [vo](app e ez)

Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic (==-¢va-eanat™))

VEP . A | INaty. A
ADB|AAB|AVB

eval(e,v) |eq(n,n’) | nat'(n)

Propositions: A, B : Form

Assumptions: A Assm {Aq,..., An} (Unordered)
Parameters: = Ctx s= -|Z,a:Nat|=Z o: Exp
Proof sequent: Z|A == Al (c €{s,0})

Definition (Logical Relation for Termination, Assertion-Level)

[nat](e) <= 3INan eval(e,numn) Anatt(n)

[arr 2 Tol(6) <= VEPes. [12](€2) D [to](app e es)

Assertion Logic With Case-Analysis on Naturals

Z|A = nat*(n)

Z|A = nat*(2) Z|A = nat* (s n)

Z|Aeq(n z) = C =Z,n’:Nat|A, eq(n,s n’),nat" (n') = C

Z|A, nat* (n) =% C

@ nat™ (n) proof: structural witness for some n.

@ As-is, Pfenning’s cut-admissibility proof does not work for logic
with left-rules on atomic propositions.

@ Can be made to work as long as an index term always gets
smaller in subderivations. For nat™(n): n gets smaller.

Case-Analysis on Derivations?

@ Required in, e.g., proofs of observational equivalence (see paper).

@ Observation: For eval(e, v), indices do not get smaller in
sub-proofs. To be able to add left-rule, index by explicit metric,
e.g.: eval(e, v, d).

@ Alternatively: Treat object-language derivations as terms with
dependent sorts.

@ In the following: Will show minimal example.

Example 4: A-calculus + case + numeral constructors

Definition (AS#case)

Expressions e :: Exp := x|lamx.ey |appeies| z|seg
| case(eg, €y, X. €5)

Types T Tp == nat|arrtoTg
CBN Eval. e elv

Typing T '>e:t

Num N & |v#|

@ Numerals characterized in object-language judgment:

. v#
Z F# SV #
@ Could axiomatize as atomic formula, A :=...|ishum(v).

@ Alternatively: Treat as a dependent sort; add structural
17 Witness formula.

Example 4: Logical Relation, Assertion Logic

eval,eq,num*»

Definition (Assertion Logic (=,

Propositions: A, B : Form := VEPx A|3EPx A| E#)x A
| ADB|AANB|AVB
| eval(e v)|eq(e e’)
| num™(N)
Assumptions: A Assm == {Aq, ..., An} (Unordered)
Parameters: g Ctx = |2 a:Exp| 2, a: (e#)
Proof sequent: Z|a =5 A| (c €{s,0})

Definition (Logical Relation for Termination, Assertion-Level)

[nat](e) <= 3IF®v.eval(e,v) A I #N. num*(N)
[arr a0 (6) <= VE*ep.[t2](e2) D [To](app e €z)

Cut-Elimination for Logic with Dependent Sorts

@ “Well-sortedness” must be compositional w.r.t. substitution:

Theorem (Compositionality)

If 0:8 and =i, a:8,= | A== A then
=1, Zolo/al | Alo/od == Alo/«].

@ “Free” theorem: everything is represented in LF, contexts = in
particular.

@ Pfenning’s cut-admissibility theorem requires no changes!

Equality and Case-Analysis

@ Need to take care if we want to add equality conversion axioms to
judgments on which we reason by case distinction.

o Example: Let| e = e’ | be axiomatization of syntactic equality.
Treat as sort.

ele seise se=z ele e Ze
efe seZ

e Goal: From sn = sn’ and n #, infer n’ #.

@ Quantify over alternative judgment equivalent to , but

with explicit equality rules.

Resulting Assertion Logic

eval,num+>)
T, #=,=

Propositions: A, B : Form := VEPa A|3FPx. A

| 3e#)x A= A

| ADB|AAB|AV B

| eval(e, v) | num™(N)
Assumptions: A z Assm = {A, ..., An} (Unordered)
Parameters: g Ctx = - Za:Expl T, (e #7)

Definition (Assertion Logic <:>

| Za:(eze)

Proof sequent: Z|a =5 A| (c€{s,0})

Retain Canonicity of Derivations

@ How to define rules for ?

@ Bad: Add extra rule = extra case to handle in all proofs:

v #= vH= vy

Z #= sv/ #= v #=

conv

@ Good: Make equality intrinsic property of all rules:

*

_ *
vi#= v=sv’
ZnZ/ #

= =

v
4

ns’

SIS

@ Derivations still canonical. Conversions pushed to equality
derivations.

@ Given Q:se’Zse and N:e#=, showe’ #=.

@ N mustendinnz’ orns’.

N Q'
@ CaseN= g #= e=seg ns/ (case for nz’ analogous).

e#-

@ Obtain result by

Q
se’ =se Q’
/* *
eZe eZseg
NI
e #- e’ Zse

@ Results
e Extension of SLR method to allow reasoning by case-analysis and
equality.

e More proofs can be formalized: see paper for observational
equivalence proofs.

e Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

http://www.utr.dk/

@ Results
e Extension of SLR method to allow reasoning by case-analysis and
equality.

e More proofs can be formalized: see paper for observational
equivalence proofs.

e Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

@ Future work
o Lots of boilerplate. Code generation or extension of Twelf?

e Experiment with stronger logics — no termination guarantees for
cut-elim though.

http://www.utr.dk/

@ Results
e Extension of SLR method to allow reasoning by case-analysis and
equality.

e More proofs can be formalized: see paper for observational
equivalence proofs.

e Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

@ Future work
o Lots of boilerplate. Code generation or extension of Twelf?

e Experiment with stronger logics — no termination guarantees for
cut-elim though.

e Questions?
e Code, paper, slides: see http://www.utr.dk/.

http://www.utr.dk/

Related Work |

E

E

Frank Pfenning.
Structural cut elimination: |. Intuitionistic and classical logic.
Information and Computation, 157(1-2):84—141, 2000.

Carsten Schirmann and Jeffrey Sarnat.

Structural logical relations.

In Proceedings of the 2008 23rd Annual IEEE Symposium on
Logic in Computer Science, LICS '08, pages 69-80, Washington,
DC, USA, 2008. IEEE Computer Society.

	Motivation
	Appendix

