
Structural Logical Relations with
Case Analysis and Equality Reasoning

Ulrik Rasmussen Andrzej Filinski

Department of Computer Science
University of Copenhagen

LFMTP, Boston, MA
September 23, 2013

1

Motivation

Logical relations (LR) are a powerful proof technique, but difficult
to formalize in Twelf and similar systems.

Method to do so (structural logical relations) devised by
[Schürmann and Sarnat, 2008]: Formalizes weak normalization
and completeness of equivalence checking for simply typed
λ-calculus.

Minimal, pure λ-calculus.

Can we use this for “real” programming languages?

2

Our Contributions

Extension of structural logical relations allowing more proofs to be
formalized.

Further insight into the structure of logical-relations based proofs.

Demonstration of proofs of observational equivalence.

In this talk: High-level perspective; see paper for technical details.

3

Example 1: Termination

Definition (λnat)

Naturals n :: Nat ::= z | s n
Expressions e, v :: Exp ::= x | lam x . e0 | app e1 e2 | num n
Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: x1 : τ1, . . . , xn : τn . e : τ

Theorem (Termination)
For any e where . e : nat, there exists a v such that e ⇓ v.

4

Example 1: Logical Relation

Termination proof requires a logical relation:

Definition (Logical Relation for Termination)

e ∈ JnatK ⇐⇒ ∃n. e ⇓ num n
e ∈ Jarr τ2 τ0K ⇐⇒ ∀e2. e2 ∈ Jτ2K ⊃ app e e2 ∈ Jτ0K

Extend to open expressions: For Γ = x1 : τ1, . . . , xn : τn:

Γ ` e ∈ JτK ⇐⇒ ∀e1 ∈ Jτ1K · · ·en ∈ JτnK.
e[e1 · · ·en/x1 · · · xn] ∈ JτK

Fundamental Theorem: If Γ . e : τ then Γ ` e ∈ JτK.

Representing LR at arrow types problematic. Twelf only supports
metatheorems on ∀∃-form.

5

Use an Assertion Logic

Structural Logical Relations [Schürmann and Sarnat, 2008]:

Definition (Assertion Logic, =⇒eval)

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B
| eval(e, v)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

“Cut-full” sequent: Ξ
∣∣∆ •

=⇒ A

“Cut-free” sequent: Ξ
∣∣∆ ◦

=⇒ A

◦
=⇒ eval(_,_) axiomatizes _ ⇓ _:

Theorem (Extraction)

If ·
∣∣∅ ◦

=⇒ eval(e, v), then e ⇓ v.

6

Fundamental Theorem

LR representation: Map types to propositions w/bound expression:

JτK :: Exp→ Form

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n)
Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)

Theorem (Fundamental Theorem)
For any e, if

x1 : τ1, . . . , xn : τn . e : τ,

then
x1 : Exp, . . . , xn : Exp | Jτ1K(x1), . . . , JτnK(xn)

•
=⇒ JτK(e).

Note: Induction lives entirely on the meta-level!
7

Cut Elimination

Corollary: . e : nat implies ·
∣∣∅ •

=⇒ ∃v . eval(e, v).

By extraction, termination reduced to proving cut elimination:

Theorem (Cut Elimination)

If Ξ
∣∣∆ •

=⇒ A, then Ξ
∣∣∆ ◦

=⇒ A

In Twelf: Syntactic proof due to [Pfenning, 2000]. Bulk of work in:

Lemma (Cut Admissibility)

If Ξ
∣∣∆ ◦

=⇒ A and Ξ
∣∣∆,A ◦

=⇒ C then Ξ
∣∣∆ ◦

=⇒ C.

8

Extending to More Expressive Languages

Languages just slightly more expressive than simply typed
λ-calculus require stronger assertion logic.

Specifically, equality reasoning and case-analysis principles.

Assertion logic can only be strengthened if it retains
cut-admissibility.

9

Example 2: λ-calculus + ifz

Definition (λnat,ifz)

Naturals n :: Nat ::= z | s n
Expressions e :: Exp ::= x | lam x . e0 | app e1 e2 | num n

| ifz(e0,e1,e2)

Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: Γ . e : τ

Fund thm.: By IH, get JnatK(e0) ≡ ∃Natn. eval(e0,num n). Select
one of branches e1 or e2 based on n.

Structure of terms opaque to assertion logic.

Specify structure explicitly in LR.
10

Example 2: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B | A ∧ B | A ∨ B

| eval(e, v) | eq(n,n ′)
Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n)
∧ (eq(n, z)∨ ∃Natn ′. eq(n, s n ′))

Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)

11

Equality

eq(n,n ′) axiomatizes syntactic equality:

Ξ
∣∣∆ c

=⇒ eq(n,n)

Cannot show cut-elim for logic w/general equality conversion.

Must restrict equality reasoning to leaves of proofs, i.e., atomic
formulas:

Ξ
∣∣∆ c

=⇒ eq(n1,n ′1)
Ξ
∣∣∆ c

=⇒ eval(e[n1/x1], v [n2/x2]) Ξ
∣∣∆ c

=⇒ eq(n2,n ′2)

Ξ
∣∣∆ c

=⇒ eval(e[n ′1/x1], v [n ′2/x2])

12

Example 3: λ-calculus + case

Definition (λnat,case)

Naturals n :: Nat ::= z | s n
Expressions e :: Exp ::= x | lam x . e0 | app e1 e2 | num n

| case(e0,e1, x . e2)

Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: Γ . e : τ

Still need to select branch based on JnatK(e0).

In subcase where ∆
∣∣Ξ •

=⇒ eval(e0,num (s n ′)): By IH, get
Ξ, x : Exp

∣∣∆, JnatK(x) •
=⇒ JτK(e2). Instantiate LR for e2[num n ′/x]:

Need to show •
=⇒ JnatK(num n ′).

13

Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | eq(n,n ′)

| nat+(n)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n)

∧ nat+(n)

∧ (eq(n, z)∨ (∃Natn ′. eq(n, s n ′)

∧ (eq(n ′, z)∨ ∃Natn ′′. · · ·)))
Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)

14

Example 3: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq,nat+))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Natα.A
| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | eq(n,n ′) | nat+(n)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Nat | Ξ,α : Exp

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Natn. eval(e,num n) ∧ nat+(n)

∧ (eq(n, z)∨ (∃Natn ′. eq(n, s n ′)

∧ (eq(n ′, z)∨ ∃Natn ′′. · · ·)))

Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)

14

Assertion Logic With Case-Analysis on Naturals

Ξ
∣∣∆ c

=⇒ nat+(z)

Ξ
∣∣∆ c

=⇒ nat+(n)

Ξ
∣∣∆ c

=⇒ nat+(s n)

Ξ
∣∣∆,eq(n, z) c

=⇒ C Ξ,n ′ : Nat
∣∣∆,eq(n, s n ′),nat+(n ′) c

=⇒ C

Ξ
∣∣∆,nat+(n) c

=⇒ C

nat+(n) proof: structural witness for some n.

As-is, Pfenning’s cut-admissibility proof does not work for logic
with left-rules on atomic propositions.

Can be made to work as long as an index term always gets
smaller in subderivations. For nat+(n): n gets smaller.

15

Case-Analysis on Derivations?

Required in, e.g., proofs of observational equivalence (see paper).

Observation: For eval(e, v), indices do not get smaller in
sub-proofs. To be able to add left-rule, index by explicit metric,
e.g.: eval(e, v ,d).

Alternatively: Treat object-language derivations as terms with
dependent sorts.

In the following: Will show minimal example.

16

Example 4: λ-calculus + case + numeral constructors

Definition (λsz,case)

Expressions e :: Exp ::= x | lam x . e0 | app e1 e2 | z | s e0

| case(e0,e1, x . e2)
Types τ :: Tp ::= nat | arr τ2 τ0

CBN Eval. E :: e ⇓ v
Typing T :: Γ . e : τ

Num N :: v #

Numerals characterized in object-language judgment:

z #

v #

s v #

Could axiomatize as atomic formula, A ::= . . . | isnum(v).

Alternatively: Treat v # as a dependent sort; add structural
witness formula.17

Example 4: Logical Relation, Assertion Logic

Definition (Assertion Logic (=⇒eval,eq,num+

Π))

Propositions: A,B :: Form ::= ∀Expα.A | ∃Expα.A | ∃(e #)α.A
| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | eq(e,e ′)
| num+(N)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Exp | Ξ,α : (e #)

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

Definition (Logical Relation for Termination, Assertion-Level)

JnatK(e) ⇐⇒ ∃Expv . eval(e, v)∧ ∃(v #)N.num+(N)

Jarr τ2 τ0K(e) ⇐⇒ ∀Expe2. Jτ2K(e2) ⊃ Jτ0K(app e e2)

18

Cut-Elimination for Logic with Dependent Sorts

“Well-sortedness” must be compositional w.r.t. substitution:

Theorem (Compositionality)

If o :: S and Ξ1,α : S,Ξ2 | ∆
c

=⇒ A then
Ξ1,Ξ2[o/α] | ∆[o/α]

c
=⇒ A[o/α].

“Free” theorem: everything is represented in LF, contexts Ξ in
particular.

Pfenning’s cut-admissibility theorem requires no changes!

19

Equality and Case-Analysis

Need to take care if we want to add equality conversion axioms to
judgments on which we reason by case distinction.

Example: Let e ?
= e ′ be axiomatization of syntactic equality.

Treat as sort.

e ?
= e

e ?
= e ′

s e ?
= s e ′

s e ?
= s e ′

e ?
= e ′

s e0
?
= z

e ?
= e ′

e ?
= e ′ e ′ ?

= e ′′

e ?
= e ′′ · · ·

Goal: From s n ?
= s n ′ and n #, infer n ′ #.

Quantify over alternative judgment e #= equivalent to e # , but
with explicit equality rules.

20

Resulting Assertion Logic

Definition (Assertion Logic
(
=⇒eval,num+

Π, #=,
?
=

)
)

Propositions: A,B :: Form ::= ∀Expα.A | ∃Expα.A

| ∃(e #=)α.A | ∃(e ?
=e ′)α.A

| A ⊃ B | A ∧ B | A ∨ B
| eval(e, v) | num+(N)

Assumptions: ∆ :: Assm ::= {A1, . . . ,An} (Unordered)
Parameters: Ξ :: Ctx ::= · | Ξ,α : Exp | Ξ,α : (e #=)

| Ξ,α : (e ?
= e ′)

Proof sequent: Ξ
∣∣∆ c

=⇒ A (c ∈ {•, ◦})

21

Retain Canonicity of Derivations

How to define rules for e #= ?

Bad: Add extra rule⇒ extra case to handle in all proofs:

z #= nz
v ′ #=

s v ′ #=
ns v #= v ?

= v ′

v ′ #=
conv

Good: Make equality intrinsic property of all rules:

v ?
= z

v #= nz ′ v ′ #= v ?
= s v ′

v #= ns ′

Derivations still canonical. Conversions pushed to equality
derivations.

22

Example

Given Q :: s e ′ ?
= s e and N :: e #=, show e ′ #=.

N must end in nz ′ or ns ′.

Case N =
N ′

e0 #=

Q ′

e ?
= s e0

e #= ns ′ (case for nz ′ analogous).

Obtain result by

N ′

e0 #=

Q

s e ′ ?
= s e

e ′ ?
= e

Q ′

e ?
= s e0

e ′ ?
= s e0

e ′ #=
ns ′

23

Summary

Results
Extension of SLR method to allow reasoning by case-analysis and
equality.

More proofs can be formalized: see paper for observational
equivalence proofs.

Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

Future work
Lots of boilerplate. Code generation or extension of Twelf?

Experiment with stronger logics – no termination guarantees for
cut-elim though.

Questions?
Code, paper, slides: see http://www.utr.dk/.

24

http://www.utr.dk/

Summary

Results
Extension of SLR method to allow reasoning by case-analysis and
equality.

More proofs can be formalized: see paper for observational
equivalence proofs.

Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

Future work
Lots of boilerplate. Code generation or extension of Twelf?

Experiment with stronger logics – no termination guarantees for
cut-elim though.

Questions?
Code, paper, slides: see http://www.utr.dk/.

24

http://www.utr.dk/

Summary

Results
Extension of SLR method to allow reasoning by case-analysis and
equality.

More proofs can be formalized: see paper for observational
equivalence proofs.

Nice property: Pfenning’s cut-elim proof works for
dependentently-sorted logic.

Future work
Lots of boilerplate. Code generation or extension of Twelf?

Experiment with stronger logics – no termination guarantees for
cut-elim though.

Questions?
Code, paper, slides: see http://www.utr.dk/.

24

http://www.utr.dk/

Related Work I

Frank Pfenning.
Structural cut elimination: I. Intuitionistic and classical logic.
Information and Computation, 157(1–2):84–141, 2000.

Carsten Schürmann and Jeffrey Sarnat.
Structural logical relations.
In Proceedings of the 2008 23rd Annual IEEE Symposium on
Logic in Computer Science, LICS ’08, pages 69–80, Washington,
DC, USA, 2008. IEEE Computer Society.

25

	Motivation
	Appendix

